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This is a course thesis of general relativity lectured by Professor Jia. In this article, we have
discussed the theory of the evolution of compact objects and the observation of such compact
objects.

I. THE THEORY OF WHITE DWARFS

A. Thermodynamics of Compact Objects

1. Some Fundamental Relations

In thermodynamics system we often use a potential
function to describe its properties. Here we will deal
with the identical ideal Fermions, therefore the Landau
potential Ω = −PV is a reasonable choice because it can
describe a system with variable number of particles and
variable energy. From fundamental relation of Thermo-
dynamics we can show that:

dΩ = −SdT − pdV −Ndµ (1)

Now we focus on a single particle state denoted by mo-
mentum ~p. We can view this state as a subsystem of the
whole system, and it has its own Landau potential

Ωp = −kT lnZG = −kT ln
(

1 + e−
ε−µ
kT

)
(2)

where ε means the kenetic energy. Use the relation Eq.(1)
we can get the mean particle number of these single par-
ticle state called Fermi-Dirac distribution

np = −
(
∂Ωp

∂µ

)
T,V

=
1

e
ε−µ
kT + 1

(3)

The Thermodynamics potential Ω must be an extensive
quantity, and therefore we can make summation of Ωp of
all single particle states to get the total Ω of the system

Ω =

∫
Ωp ·

g

h3
d
3rd

3p=
4πg

h3
V

∫ ∞
0

p2Ωpdp (4)

here g/h3 = (2s+ 1) /h3 means the state density in phase
space. We then can get pressure P through relation Ω =
−PV . We can also derive density of particle number and
density of energy in position space

n =
1

V

∫
np ·

g

h3
d
3rd

3p =
4πg

h3

∫ ∞
0

p2npdp (5)

ρE =
1

V

∫ √
(pc)

2
+ (mc2)

2 · np
g

h3
d
3rd

3p

=
4πg

h3

∫ ∞
0

p2np

√
(pc)

2
+ (mc2)

2
dp (6)
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Once we get the energy density ρE from Eq.(6) and pres-
sure P from Landau potential, we can derive the implicit
relation between ρE and P , although it will always de-
pend on the temperature(we assume chemical potential
µ will be cancelled).

2. Ideal degenerate Fermi-gas

Since the equation of state always depend on temper-
ature as discussed above, which make the problem com-
plicated, we now discuss a special and simple case of it.
At temperature T = 0, the Fermi-gas (e.g. the electron
gas and neutron gas) will be at the ground state, the
degeneracy pressure will be the only source of pressure.
Although there will never be a case with T = 0, in many
cases ideal degenerate Fermi-gas model is a reasonable
choice(e.g. the white dwarf and the outer shell of neu-
tron star).

At zero temperature the Fermi-Dirac distribution
Eq.(3) becomes a step function located at εF = µ (called
Fermi-energy). Then from Eq.(4), Eq.(5) and Eq.(6) we
can derive the pressure, density of particle number, den-
sity of energy at zero temperature and finally get the
equation of state. We begin with equation Eq.(5), let nP
become step function and we get the density of particle
number

n =
4πg

h3

∫ pF

0

p2dp =
x3F

3π2λ3
(7)

where λ = ~/ (mc) is the Compton wavelength of the
particle, pF = xFmc is Fermi momentum, and we have
assume g = 2 for the further discussion of the electron
and neutron. Eq.(7) has clear physical meaning (the fol-
lowing equations can also be interpreted like this), where
λ3 behaves like the volume that a particle occupy (there
is just a difference of coefficient). Now for Eq.(6) at zero
temperature we get the density of energy

ρE =
4πg

h3

∫ pF

0

p2
√

(pc)
2

+ (mc2)
2
dp

=
mc2

π2λ3

[
x3F
3

+

∫ xF

0

x2
(√

1 + x2 − 1
)

dx

]
=

mc2

24π2λ3

(
−8x3F + 3

√
1 + x2F

(
xF + 2x3F

)
− 3arcsinh (xF )

)
(8)



2

his equation looks like a little complicated, we will soon
simplify it together with the following equation. And
from Eq.(4) we get the pressure of ideal degenerate
Fermi-gas

P =
4πg

h3
kT

∫ ∞
0

p2 ln
(

1 + e−
ε−µ
kT

)
dp

=
8π

3h3

∫ pF

0

p3
∂ε

∂p
dp

=
mc2

3π2λ3

∫ xF

0

x4√
1 + x2

dx

=
mc2

24π2λ3

(
x2F

√
1 + x2F

(
−3 + 2x2F

)
+ 3arcsinh (xF )

)
(9)

Equations Eq.(7), Eq.(8), Eq.(9) are the final result we
want to derive. Then we will use these result to give the
equation of state of white dwarf and neutron star.

For white dwarf, the pressure is generated by the de-
generacy pressure of electron, while the mass density
(we use mass instead of energy density in Newtonion
mechanics) is mainly provided by the rest mass of nu-
clei. We therefore use Eq.(7) and Eq.(9) and replace
the density of particle number by the mass density of
matter(ρM = mBνene, where ne is density of electron
number determined by Eq.(7), νe = n/ne , mβ is the rest
energy per nucleon) , and then we get the equation of
state of white dwarf (implicit function)

ρM =
mBνe
3π2λ3

x3F

P =
mc2

3π2λ3
· 3

8

[
xF

√
1 + x2F

(
2

3
x2F − 1

)
+ arc sinh (xF )

]
(10)

Using this equation of state (together with the Newtonion
equilibrium equation that we will discuss in Section 2) we
can solve the radius and mass of the white dwarf.

However, in the case of neutron star, we use energy
density instead of mass density (because the relativistic
effect we will discuss latter). We therefore use Eq.(8)
and Eq.(9) to give the equation of state of neutron star.
According to Oppenheimer’s article, it is better to make
the variable substitution t = 4arcsinhxF , and then from
Eq.(8) and Eq.(9) we get a simplifying equation of state
(implicit function) as following

ρE = κ (sinh t− t)

P =
κ

3

(
sinh t+ 3t− 8 sinh

t

2

)
(11)

where κ = mc2/
(
32π2λ3

)
. This equation of state will be

used (together with TOV equation that we will discuss in
Section 3) to solve the radius and mass of neutron star.

FIG. 1. Sketch of white dwarf

B. Equilibrium of White Dwarf

1. Equilibrium Equation in Newtonion Gravity

For low density compact objects like white dwarf, New-
tonion gravity behaves well on solving these system. We
assume the white dwarf is spherically symmetric and then
use Newtonion gravity to give the equilibrium equation
of it. We begin with considering a small shell inside the
star. The mass enclosed within r is given by

m (r) =

∫ r

0

ρ (r′) · 4πr′2dr′ (12)

The gravity and the pressure together make the shell
equilibrium. We therefore have

dσdP (r) +
G · ρ (r) dσdr ·m (r)

r2
= 0 (13)

By simplifying Eq.(12) and Eq.(13) we will have two
equations

dm

dr
= 4πr2ρ (r) (14)

dP

dr
= −Gρ (r)m (r)

r2
(15)

These two equations determine the equilibrium of the
star. But there are three unknown functions in these two
equations, we therefore need another equation, usually
the equation of state. By solving these two equations
together with equation of state, we will finally get the
density, pressure distribution within the star, and if P =
0 at some r = r0, it means we reach the surface of the
star, and thus ro, m(r0) will be the radius and mass of
it.

2. Mass and Radius of White Dwarf

Therefore, for white dwarf we now have four equations
and four unknown functions P , m , ρ , xF , we list then
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in the following. In the previous section we have get
the equilibrium equation from Newtonian gravity and the
definition of mass inside the shell with radius r:

dP (r)

dr
= −Gm (r)

r2
ρ (16)

dm (r)

dr
= 4πρr2 (17)

And other two equations give the implicit relation be-
tween density and pressure (here we do not make any
further assumptions about the equations of the state, so
this is not a polytropic star):

ρ =
mBνe
3π2λ3

x3F (18)

P =
mc2

3π2λ3
· 3

8

[
xF

√
1 + x2F

(
2

3
x2F − 1

)
+ arc sinh (xF )

]
(19)

We bring Eq.(18) and Eq.(19) into Eq.(16) and Eq.(17)
, then we get two equations about xF (r) ,m(r) :

dm∗

dr∗
= 4πr∗2x3 (20)

dx∗

dr∗
= −
√

1 + x2

x

m∗

r∗2
(21)

here we set proper units of m and r, and denote the
quantities in our units by ‘*’. The unit of length isb =
πc

mBνe

√
3mλ3

G ≈ 1.3764 × 107m , the unit of mass is

a = b3mBνe
3π2λ3 ≈ 5.0643 × 1030kg , and we choose νe = 2

that is proper for most matter. We then set the bound-
ary conditions as m (0) = 0, x (0) = x0 , where x0 may
be any positive real number corresponding to the density
at center of the star, it will finally determine its mass and
radius. For any given x0 , we solve this two equations,
and once x = 0 at some r = r0 , it will be the boundary
of the star, then m(r0) will be the mass of it. By solving
this two equations with different x0 we will get the rela-
tions between radius and mass of the star. We may can’t
solve those equations analytically, but instead we using
numerical approach to solve it. Given the initial condi-
tions, we use Euler method to iterate until the boundary
is found.

To confirm our result, we can compare it with the
analytical one in some special cases. If the density of
the white dwarf is low, we can believe that the elec-
tron within it is non-relativistic. And if the density is
much higher, we may expect the electron to be ultra-
relativistic. In these two cases, through approximation
of equations Eq.(18) and Eq.(19) we can get the explicit
equation of state

P = Kργ (22)

In non-relativistic case K = mc2

5

(3π2)
2/3

m
5/3
B

λ2

ν
5/3
e

, γ = 5/3,

and in ultra-relativistic case K = mc2

4

(3π2)
1/3

m
4/3
B

λ

ν
4/3
e

, γ =

FIG. 2. The radius-mass relation of the white dwarf. Given
the central density of the star, we use Euler method to cal-
culate the density distribution of the star from equations
Eq.(20), Eq.(21). Vanishing density means the boundary of
the star and thus determine the radius and mass of it. Red
scattering dots show the numerical result. For comparison,
we also plot the result corresponding to non-relativistic (blue
scattering dots) and ultra-relativistic (orange line) equation
of state. It is clear that there exist upper limit of mass at
1.450 mass of sun (called Chandrasekhar mass).

4/3. Now we use Eq.(22) together with Eq.(16) and
Eq.(17), and make variable substitution r = R0ξ, ρ =

ρ0θ
1/(γ−1), where R0 =

(
γKργ−2

0

4πG(γ−1)

)1/2
, and ρ0 is the

density of the center of the star, then we get the the
Lane-Emden equation

d

dξ

(
ξ2

dθ

dξ

)
= −ξ2θ1/(γ−1) (23)

The corresponding boundary condition is θ (0) = 1,
θ′ (0) = 0. We can also get the mass and radius of the star
in the following way: Solve Lane-Emden equation numer-
ically, and find ξ0 at which θ = 0 which corresponds the
surface of the star, then RW = R0ξ0 is the radius of the
star, and MW =

∫ r0
0

4πr2ρ (r)dr = 4πR3
0ρ0ξ

2
0 |θ′ (ξ0)| is

the mass of the star. If we cancel the central density ρ0
from the above two relations, we then get the radius-mass
relation of the white dwarf:

R3
WMW = const. = 4π

(
5K

8πG

)3

ξ50 |θ′ (ξ0)| (non-relativistic)

MW = const. = 4π

(
K

πG

)
ξ20 |θ′ (ξ0)| (ultra-relativistic)

(24)

FIG.2 show the relation between mass and radius of the
star, for comparison we also give the relation of mass and
radius that is derived in the non-relativistic and ultra-
relativistic cases. From it we can see the fundamental fea-
ture of the white dwarf. As the mass of the white dwarf
increase, its radius will decrease. That means a more
massive white dwarf will much more compact than the
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FIG. 3. Density distribution in white dwarf. A spherically
symmetric white dwarf is considered here. Using Eq.(19) and
Eq.(21) we can solve the density distribution of this star. Here
we choose x0 = 0.1 (corresponding to a typical white dwarf
with central density 1.942×103kg/m3 , radius 0.046R� , mass
0.022M� ), and plot the density on a section passing by the
center of the star. The density has a maximum in the center
as expected, and vanish in the exterior boundary.

less massive one, so the density of massive white dwarf
is very high. We can see that a white dwarf with mass
less than 0.1Msun is “non-relativistic”, if we use a non-
relativistic equation of state to describe it, the deviation
with be small. But once its mass is larger than 0.2Msun

the electron gas within it will be relativistic, we should
use relativistic equation of state to describe it. Another
feature of white dwarf is that there exist upper limit of its
mass (called Chandrasekhar mass), any polytropic white
dwarf can’t approach this mass unless how high density
it would be. The numerical result match the analyti-
cally result which use ultra-relativistic equation of state
to derive this mass.

FIG.3 show the corresponding density distribution of
the star (we just show a section passing the center of the
star). We choose the value to make it a typical white
dwarf. The density has a maximum value at the center
of the star as expected, and it decreases monotonically
until reaches the surface of the star.

3. Cooling of White Dwarf

The white dwarf’s temperature is high once it comes
into being. However, as it burns out its energy source,
many process contributes in its cooling. The White dwarf
can be viewed as a thin shell (with semi-classical electron
gas and thus a relative high conductivity of heat) covering
a huge core with degeneracy electron gas and thus being
isothermal). We begin with considering the diffusion of
photon in the thin shell of the surface of the star, which
carries energy of white dwarf to the outer space, and thus
cools the star. The luminosity of diffusion of photon is
given by

Lγ = −4πr2
c

3κρ

d

dr

(
aT 4

)
(25)

where ρ is mass density and is opacity, and a = 7.56 ×
1015erg·cm−3 ·K−3 is radiation constant. When the tem-
perature is relative low, the free-bound process (photon
absorbed by bound electron and makes the atom ionized)
dominate the opacity given by κ = κ0ρT

−3.5. We fur-
ther assume the star is in equilibrium in a not very long
time, so the equation of equilibrium of Newtonion gravity
Eq.(14) Eq.(15) is applied to this case. The shell within
the surface of the star has low density, so its equation of
state should be semi-classical, which mean the following
relation

P =
ρ

νmB
(26)

where ρ is the mass density as before, ν ≈ 1.4 is the
mean nucleons per electron. With Eq.(14), Eq.(15) and
Eq.(25), Eq.(25) we can solve the relation between pres-
sure and temperature

P =

(
64

51

πacGMk

κ0LγνmB

)1/2

T 4.25 (27)

We now want to find the position at which the semi-
classical electron gas become degenerate. So we associate
26, 27 and equation of state of degenerate ideal electron
gas 22 (we assume the electron to be non-relativistic,
and therefore γ = 5

3 ), and we therefore get the critical
temperature and density

Tcritical = [
Lγ

2× 106M/M�
]2/7(K) (28)

ρcritical = 4.8× 10−8(g/cm3)T
3/2
critical (29)

For a typical white dwarf L = 10−3L�, M = M�, the
corresponding temperature and density is Tcritical = 8×
106K, ρcritical = 1 × 103g/cm3, which is not much high
so that the semi-classical shell is just a thin shell in the
surface of the white dwarf.

The critical temperature equation Eq.(28) give the re-
lation between the luminosity and temperature Lγ =

CMT 7/2(the core, which occupy the most volume of the
star, is isothermal so that the critical temperature can
be viewed as the core’s temperature), we can use it to
determine the cooling of the star. We note that the heat
capacity in the core of the star is mainly provided by the
ions, because ions here are semi-classical and has large
heat capacity while electron here is high degenerate and
has nearly negligible heat capacity. So the internal en-
ergy of the core here is E = 3

2NkT = 3
2kT

M
mBA

, where A
is the mass number of the atom and we assume the star
is made of single atom molecule. We therefore can get
the cooling equation as following

−dE

dt
= Lγ ⇒ −

(
3k

2AmBC

)
dT

dt
= T 3/2 (30)

We integrate this equation and let T (t = 0)� T (t), and
then get the time evolution of the temperature of the star

T (t) =

(
5AmBC

3k
t

)−2/5
(31)
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FIG. 4. Cooling of white dwarf. Here we show the tempera-
ture – time relation of a typical white dwarf when it is cooling.
Parameters here is: mass number A = 4 (we assume this star
is occupied mainly by helium), and CM� = 2× 106erg/s for
a star that bound-free absorption of photon dominate. The
temperature T ∝ t−2/5 so it decreases as time increases. A
typical time of cooling of white dwarf is 109 year, and here
we just plot the time varies from 103 to 105 year to show the
behavior of its cooling.

FIG.4 give the plot of such a process of cooling. The
temperature decrease monotonically. If we let the tem-
perature be T = 8 × 106K(corresponding luminosity
is L = 10−3L� from Eq.(28)), then we get the time
t = 1.8 × 109year . It is a very long time for human
beings!

The white dwarf has relative lower density compared
with other compact object, so the Newtonion gravity is
suitable for solving the structure of it. However, for other
compact object (e.g. neutron star), the strong interac-
tion of nucleons must be considered, so the pressure pro-
vided by nucleons will also affect the structure of the star.
What’s more, as gravity be much stronger, the effect of
general relativity must be play import role in determining
the structure of the star and problem thus will be much
more complicated In the case of neutron star. Therefore
white dwarf is a just a very special case of compact ob-
jects in our universe. We will consider the neutron star
in the following section.

II. THE THEORY OF NEUTRON STARS

A. Equilibrium of Neutron Stars

The constitution of realistic neutron star may be very
complex, it has layer structures like FIG.5. It con-
sists of not only neutrons, but also electrons and other
quark matters such as protons, pions, even hyperons etc.
And there exists strong interaction among quark mat-
ters. While the theory of strong interaction is beyond our
ability for now,, we neglected the strong interaction and
considered neutron star which is completely composed of

FIG. 5. The possible interior structure of neutron stara

a cited from Wikipedia

neutron to calculated its equation of state.

1. Equation of Mass Continuity

Due to the spherical symmetry of neutron star, we can
easily obtain

dm(r)

dr
= 4πr2ρ(r) (32)

where m(r) represents the mass within a sphere whose
radius is r and center is located on the center of neutron
star, ρ(r) is the radial distribution of density. It reveals
the relationship between m(r) and ρ(r).

2. TOV Equation

Schwarzschild radius rS = 2GM
c2 is a quantity which

stands for the strength of the gravity field. When the
radius of celestial object r � rS , ts gravity field is
weak field; while when the radius of celestial object r
approaches rS , its gravity field is quite strong, so the ef-
fect of general relativity can’t be neglected. Because the
mass-radius ratio of neutron star M/R is very large, (for
neutron rS

R = 2GM
Rc2 ≈ 0.1), there is no doubt that general

relativity needs to be used.
Starting from static spherical symmetric spacetime

metric,

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2 (33)

we can acquire the metric tensor gµν of the spacetime,
next Γαµν , and then Rµναβ and so on. Utilizing Gµν =

Rµν − 1
2gµνR, all Gµν can be calculated out.

Next, we further assume that perfect fluid is in equilib-
rium, which means that P and ρ do not depend on time,
uµ has only t-components.

Tµν = (ρ+ P )uµuν + Pgµν (34)

From these equations we can calculate out all Tµν .
Using Einstein equation and ∇µTµν = 0. Eventu-

ally, we can derive the TOV equation that determines
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the state of neutron star,

dP (r)

dr
= −(ρE(r) +

P (r)

c2
)
G[m(r) + 4πr3P (r)

c2 ]

r(r − 2Gm(r)
c2 )

(35)

when ρ(r) is the pressure at radius r of neutron star,
G is the gravitational constant. This equation is quite
complex. Note that this equation reduces to Eq.(15).

3. Equation of State

To solve the state function of neutron star, i.e. solve
for ρ(r), m(r), P (r), we need another equation P = P (ρ).
Pay attention to that the first two equations are almost
universal, they are irrelevant to the concrete states and
types of matter and so on. Therefore, we need an equa-
tion of state that describes neutron star in special. It
also is the core part of our neutron star model.

Considering that neutron and electron are both
Fermions which obey the Fermi-Dirac statistics, the de-
generacy pressure of neutron in neutron stars is similar
to the degeneracy pressure of electron in white dwarfs.
Imitating the solution of white dwarf, we can obtain the
Fermi gas model of neutron star, just by replacing all pa-
rameters in white dwarf with parameters in neutron star,
such as substituting mass of neutron for electronic mass
etc. According to the Fermi gas model of neutron star,
we can obtain the expression of pressure,

P =
mc2

24π2λ3
[x2F

√
1 + x2F

(
−3 + 2x2F

)
+ 3arcsinh (xF )]

(36)
where

λ =
~

mnc
(37)

and P is pressure, pF is Fermi momentum

ρE =
mc2

24π2λ3
[−8x3F + 3

√
1 + x2F

(
xF + 2x3F

)
− 3arcsinh (xF )]

(38)
We are able to derive the equation of state P = P (ρ)
using these relations.

4. The Solution of State Functions of Neutron Star

The ODE set:

dm(r)

dr
= 4πr2ρ(r) (39)

dP (r)

dr
= −(ρE(r) +

P (r)

c2
)
G[m(r) + 4πr3P (r)

c2 ]

r(r − 2Gm(r)
c2 )

(40)

P (r) = P (ρ(r)) (41)

with appropriate initial conditions ρ(0) = 1018 kg/m3

determines the solution uniquely. However, due to com-
plexity of this ODE set, we chose to solve it numerically

FIG. 6. Numerical Solution of P (r), m(r) and ρ(r)

FIG. 7. Our Solution to M − r Relation

by using Euler–Cromer method. Numerical solutions of
P (r), m(r) and ρ(r) are shown in FIG.6.

Having obtained these state functions, we are able to
derive the relation of a neutron star’s total mass M and
its radius R. This relation is important for it can be
tested via observation. Our Solution to M − r Relation
are shown in FIG.7.
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FIG. 8. The solution of Oppenheimer and Volkoff. Note that
t is a quantity which is related to radius R. Its concrete
expression which is a little complex is negelected here. Reader
can refer to their original article

On the right side of single-peaked curve, the radius (or
say volume) of neutron star is a decreasing function of
its mass, that is normal; while on the left side of single-
peaked curve, radius is an increasing function of its mass,
which is abnormal! When the increasing of its mass leads
to the increasing on its gravity, only if its radius decreases
can it produce higher pressure to counteract increasing
gravity. However, on the left side of single-peaked curve,
radius should be an increasing function of its mass. Such
equilibrium is unstable. If there exists a little perturba-
tion, it will collapse or explode rapidly.

Realistic neutron star must be stable, so the peak value
point where its radius is about 10km, mass is about 0.85
solar mass, is the limit state of neutron star. Or say the
minimal radius of neutron star is about 10 km, the upper
limit of mass is about 0.85M� under this model.

J.R. Oppenheimer and G. M. Volkoff solved the same
problem ,the same model by numerical method. Their re-
sult is shown in FIG.8. Their conclusion is that the upper
limit of mass of neutron star is about 0.75M�. In gen-
eral, our result is similar to their result. Two curves have
the similar shapes and their peak values do not have not
large difference. However, the difference between them
cannot be ignored, for it cannot be just due to calcu-
lation error. This difference may well be explained by
following reasoning:
1. Their data points are too few, while our calculation
produced far more data points. Hence, our work is more
convincing.
2. Their computing method is different from ours.
With all above arguments taken into consideration, we
believe our result is more accurate.

5. The Cooling of Neutron Stars

Next, we consider the cooling of neutron star. This
process includes two periods: neutrino cooling era and
photon cooling era. From several days to thousands
years, neutrino emission dominated it cooling. After 104

years, the star cools via photon emission,

dQ

dt
= cV

dT

dt
= −Lν(t, T )− Lγ(t, Ts) (42)

where N is density of particle, and x = pF
mc .

Neutrino luminosity

Lν = bT k (43)

There are many processes to emit neutrino, for example
modified Urca process. For this process, we can find that
cooling time

∆t(URCA) ≈ 1× T−6f Yr (44)

Photon luminosity

Lγ = 4πσR2T 4
s (45)

where

Ts ≈ (αT )β (46)

α = 7 (47)

β = 0.5 (48)

Therefore we have

Lγ = cT 2 (49)

where c = 4π × 49σR2.
For this process we have

∆t(Photon) ≈ 103 Yr (50)

In general, the cooling equation is:

αT
dT

dt
= −bT k − cT 2 (51)

III. EXPERIMENTAL OBSERVATION OF
COMPACT OBJECTS

A. Astronomical Observation of White Dwarfs

1. Historical Introduction

The first white dwarf identified is 40 Eridani B which
is in a three-body system of 40 Eridani. The star was
discovered by Willam Herschel in 1783, and was later
re-observed several times in the next century. It was
not until the year of 1910 that 40 Eridani B ’s pecularity
had been noticed by astronomers. A group of British as-
tronomers: Henry Norris Russell, Edward Charles Pick-
ering and Williamina Fleming found that 40 Eridani B
is ”white” despite the fact that it was considerably dim.

The most famous white dwarf — Sirius B was also
discovered in early periods. The great mathematician
,astronomer Friedrich Bessel noticed in 1844 that Sirius
moved in a periodic manner. He further asserted that
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Sirius had unseen co-star, and estimated its period to
be half a century. Later observations confirmed its exis-
tence. In 1915, Walter Adams found that Sirius B is also
”white” despite the fact that it was considerably dim.

These two white dwarfs, together with Van Maanen’s
Star, were named classical white dwarfs, since they were
the first three white dwarfs that have been discovered.

It was before long that white dwarfs’ extraodinary
huge density was noticed by astophysicists. At the
beginning of the 20th century, astronomical observations
have become accurate. Astrophysicists are able to
determine the mass of a star which is in a binary system
by investigating its dynamical property. Determining
the radii of a star was a little more complicated, but
also within our reach. By invoking the following formula:

L = 100.4(4.72−Mb)L� (52)

one is able to determine total luminosity of any ob-
ject(Notice that here Mb is the absolute bolometrc mag-
nitude which can be measured on earth). Spectral anal-
ysis also enables one to obtain the effective temperature
on the star. The combination of these two paramters en-
able physicists to estimate(not determine!) the radii of
the star through Stefan-Boltzmann Law :

L = 4πR2σT 4
e (53)

In 1916, Ernst Opik estimated that 40 Eridani B’s density
to be ρ�. These astonishing findings motivated physicists
including Chandraeskhar to seek for a new star model.

The theory of white dwarfs was soon formulated,
meanwhile the search for white dwarfs was progressing
steadily. By 1999, more than 2000 white dwarfs were
found. The project Sloan Digital Sky Survey was a great
leap forward, for more than 9000 white dwarfs were found
by the project.

2. Observational Methods and Achievements

According to the theory of white dwarfs, white dwarfs
with definite mass should have definite radii. Almost all
the white dwarfs observed have the mass around M�.
Then according to Stefan-Boltzmann Law, we should
have:

L ∝ T 4
e (54)

Therefore, white dwarfs are expected to occupy a narrow
strap in H-R diagram. In fact, they do so as shown in
FIG.9. In fact, such tests are named ”zero-order tests”
of the theory of white dwarfs.

Determination of white dwarfs’ radii can be tricky. Ac-
cording to energy conservation in radiation, we have:

Fν(Measured) = Fν(Surface)
R2

D2
(55)

FIG. 9. White Dwarfs on H-R Diagrama

a cited from Shapiro’s book

where Fν is radiation flux. In this expression,
Fν(Measured) is measured on earth. Fν(Surface) is cal-
culated in an atmosphere model which requires the mea-
surement of surface temperature and surface gravity of
the white dwarf. A detailed description was compiled
by Shipman(1979). D is calculated with nearby stars
by measuring their parallax. Therefore, we are able to
obtain R.

What about mass of white dwarfs? This can be easily
done for a white dwarf in binary or triple star system.
One simply has to analyze the dynamical behavior. De-
termination of solitary white dwarf’s mass is tricky. Gen-
eral relativity predicts that photons near strong gravita-
tional field are red-shifted. By measuring this red shift
effect, one is able to determine the white dwarf’s mass.
This effect is quantitatively described by:

∆λ

λ
=

2GM

Rc2
(56)

In practice, astronomers use the non-LTE core of Hα line
to measure this effects, for other lines are easily affected
by pressure shifts. We have to be extra careful about the
choice of white dwarfs, for the red-shift effects need to
be distinguished from the Doppler effects. In order to do
that, physicists usually use white dwarfs in wide binaries
or common proper-momtion pairs, for these white dwarfs’
velocities can be measured accurately.

Typical results obtained by these methods are listed
below:

Object Mass(M�) Radius(M�)

Sirius B 1.03± 0.015 0.0074± 0.0007

Stein 2051B 0.48± 0.045 0.0111± 0.0015

40 Eri B 0.43± 0.02 0.0124± 0.0005

G107-70AB 0.65± 0.15 0.0127± 0.002

Procyon B 0.594± 0.012 0.0096± 0.0005

TABLE I. Typical White Dwarfs’ Mass and Radius

As we can see in FIG.10, observations do not agree
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FIG. 10. Mass–Radii Relationa

a cited from Shipman’s paper

with our theory of model perfectly. Such facts indicate
the necessity to further modify our model.

B. Astronomical Observation of Neutron Stars

1. Historical Introduction

The idea of neutron stars was proposed by Baade and
Zwicky in 1934. In the paper they assumed neutron
stars to have very high density and small radius, and
further suggested that neutron stars would be formed
in supernova. After 5 years, Oppenheimer and Volkoff
made the first calculation under the assumption that
neutron star matter being composed of high density free
neutron ideal gas. Desipte the fact that their work was
conducted beautifully, the idea of neutron stars was not
taken seriously at the time, for other astrophysicists ar-
gued that even if neutron star existed, their residual ra-
diation would be too weak to be observed.

In 1962, Giacconi et al. discovered cosmic nonsolar
X-ray sources, which stimulated a wide discussion about
whether such sources are neutron stars. However, deeper
analysis ruled out this possibilty since the sources’ mass
exceeded the maximum mass of stable neutron stars.

In 1967, Jocelyn Bell and Anthony Hewish discovered
the first pulsar. At the time they could not confirm that
such an accurate periodic X-ray source was natural, so
they named it ”Little Green Man” which stood for ex-
traterrestrial origin. Soon after the first discovery, an-
other X-ray source at the other part of sky was discovered
which ruled out the possibility that this was artificial. In
1968, Gold argued that the observed pulsars were in fact
rotating neutron stars which have surface magnetic field
B ∼ 1012 G. He further predicted small increase of the
period because of energy lost via electromagnetic radi-
ation. In 1969, Gold showed that the slowdown of the
Crab pulsar could be explained by neutron star model.
In fact, this discovery also provided strong support on
the supernova-origin neutron star formation thoery.

X-ray observation of binary X-ray sources allows physi-

FIG. 11. Neutron Star’s Massa

a cited from Lattimer’s work

cists to determine neutron star mass. Also, binary neu-
tron star system provides the first indirect proof for grav-
itational waves.

By the end of 2015, 2536 pulsars had been discovered.

2. Observational Methods and Achievements

Measuring neutron star’s mass is very much alike mea-
suring white dwarf’s mass. The most trusted results
are obtained by measuring the neutron star’s dynami-
cal behavior within a binary or triple system. Using this
method, astronomers have achieved considerable success
till now. Some results are listed below:

Object Mass(M�)

J0337 + 1715 1.4378± 0.0013

J0348 + 0432 2.01± 0.04

TABLE II. Typical Neutron Star

Direct measurement of neutron star’s radius do not
exist. However, one can still combine the observational
data with some assumptions to estimate the radius. Van
Pradijs estimated in 1978 that a 1.4M� neutron star has
a radius ∼ 8.5 km.

The observed properties of pulsars are comparatively
richer.
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FIG. 12. Pulse Shapea

a cited from Shapiro’s book

FIG. 13. Galactic Population: Pulsar-supernova remnant as-
sociations and millisecond pulsars are shown by the filled and
open circles respectivelya

a cited from Lorimer’s book

All pulsars’ pulse are in the form of periodic pulses.
A typical pulse consists of several subpulses which have

complicated microstructure. Average over several hun-
dred pulses is remarkably stable(FIG.12).

Galactic distribution is also interesting since it indi-
cates pulsar’s origin has relation with supernova.

FIG. 14. Observed number distribution from our input sam-
ple (upper panels) and derived distributions for model S
(lower panels)a

a cited from Lorimer’s paper(2006)
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