	0000000 00000

On the Evolution of Compact Objects

Chen Yangyao, Guo Xiao, Li Minghao

School of Physical Science and Technology, Wuhan University

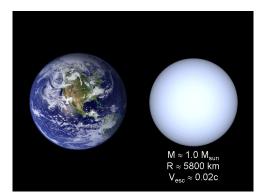
June 24, 2016

Chen Yangyao, Guo Xiao, Li Minghao

school of Physical Science and Technology, Wuhan University

Introduction Theory of White Dwarfs Theory of Neutron Stars Experimen 0000 00000000000000000000000000000000		100
--	--	-----

1 Introduction


- 2 Theory of White Dwarfs
- 3 Theory of Neutron Stars
- 4 Experimental Observation of Compact Objects

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

Introduction		
	0000 0000 00	0000000 00000

A Comparison between the Size of WD and Earth

Figure: White Dwarf and Earth

Chen Yangyao, Guo Xiao, Li Minghao

chool of Physical Science and Technology, Wuhan University

Introduction		
	0000 0000 00	0000000 00000

A Comparison between the Size of Neutron Stars and New York

Figure: Neutron Star and New York

Chen Yangyao, Guo Xiao, Li Minghao

School of Physical Science and Technology, Wuhan University

・ 山 ・ ・ ・ ・ ・

э

Introduction Theory of White Dwarfs 0000 0000 00	OCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Experimental Observation of Compact Object 0000000 00000
---	--	--

1 Introduction

- 2 Theory of White Dwarfs
- 3 Theory of Neutron Stars

4 Experimental Observation of Compact Objects

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects chool of Physical Science and Technology, Wuhan University

Theory of White Dwarfs ••••• ••••• ••	Experimental Observation of Compact Obje 0000000 00000

Thermodynamics of Compact Objects

1 Introduction

2 Theory of White Dwarfs

■ Thermodynamics of Compact Objects

- Equilibrium of White Dwarfs
- Cooling of White Dwarfs

3 Theory of Neutron Stars

4 Experimental Observation of Compact Objects

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects chool of Physical Science and Technology, Wuhan University

	Experimental Observation of Compact Obje 0000000 00000
Thermodynamies of Compost Objects	

Landau Potential:
$$\Omega_{\rm p} = -kT \ln Z_G$$

Thermodynamical Potential: $\Omega = \int \Omega_{\rm p} \cdot \frac{g}{h^3} d^3 r d^3 p$
Particle Number Density: $n = \frac{1}{V} \int n_{\rm p} \cdot \frac{g}{h^3} d^3 r d^3 p$
Energy Density: $\rho_E = \frac{1}{V} \int \sqrt{({\rm p}c)^2 + (mc^2)^2} \cdot n_{\rm p} \frac{g}{h^3} d^3 r d^3 p$

Chen Yangyao, Guo Xiao, Li Minghao

School of Physical Science and Technology, Wuhan University

Thermodynamics of Compact Objects

Equation of States: White Dwarfs

$$\rho = \frac{m_B \nu_e}{3\pi^2 \lambda^3} x_F^3$$
$$P = \frac{mc^2}{3\pi^2 \lambda^3} \cdot \frac{3}{8} \left[x_F \sqrt{1 + x_F^2} \left(\frac{2}{3}x_F^2 - 1\right) + \operatorname{arc\,sinh}\left(x_F\right) \right]$$

where x_F is for quantization of particles' relativistic behavior, λ is particle's Compton wavelength.

$$x_F = \frac{p_F}{mc}$$
$$\lambda = \frac{\hbar}{mc}$$

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects chool of Physical Science and Technology, Wuhan University

Equation of States: Neutron Stars

The following equation of states was formulated by Chandrasekhar and cited by Oppenheimer in his paper on neutron star theory in 1939.

$$\rho_E = \kappa(\sinh t - t)$$
$$P = \frac{\kappa}{3}(\sinh t + 3t - 8\sinh\frac{t}{2})$$

Remark

The above equation of state is merely a naive model. Modern theory uses far more complicated equation of state based on strong interactions between neutrons.

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects chool of Physical Science and Technology, Wuhan University

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Theory of White Dwarfs 0000 000 00	Experimental Observation of Compact Obje 0000000 00000
6 Milliter Davis of	

1 Introduction

2 Theory of White Dwarfs

Thermodynamics of Compact Objects

• Equilibrium of White Dwarfs

• Cooling of White Dwarfs

3 Theory of Neutron Stars

4 Experimental Observation of Compact Objects

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects chool of Physical Science and Technology, Wuhan University

Theory of White Dwarfs 0000 0000 00	Experimental Observation of Compact Obje 0000000 00000

Equilibrium of White Dwarfs

Equilibrium of Newtonian Theory

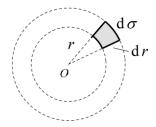
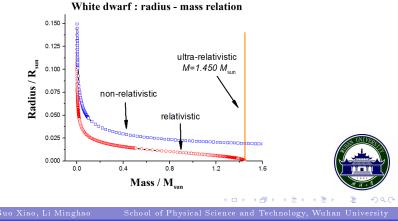


Figure: Sketch of White Dwarf

$$\frac{dm}{dr} = 4\pi r^2 \rho(r)$$

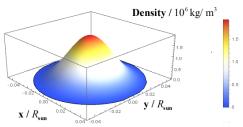
$$\frac{dP}{dr} = -\frac{G\rho(r)m(r)}{r^2}$$


Chen Yangyao, Guo Xiao, Li Minghao

School of Physical Science and Technology, Wuhan University

Solution of White Dwarfs

Combine the equilibrium equation and equation of states, we are able to obtain the numerical solution of M-R relation.



Equilibrium of White Dwarfs

Solution of White Dwarfs

The density distribution in the interior of white dwarfs is presented below

Density distribution in white dwarf

Figure: Density Distribution

Chen Yangyao, Guo Xiao, Li Minghao

School of Physical Science and Technology, Wuhan University

< ロ > < 同 > < 回 > < 回 > < 回

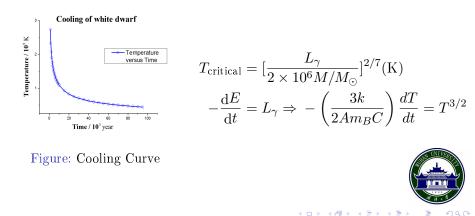
Introduction Th 000 000		Experimental Observation 0000000 00000	
Cooling of White	e Dwarfs		

1 Introduction

2 Theory of White Dwarfs

- Thermodynamics of Compact Objects
- Equilibrium of White Dwarfs
- Cooling of White Dwarfs

3 Theory of Neutron Stars


4 Experimental Observation of Compact Objects

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects chool of Physical Science and Technology, Wuhan University

	Theory of White Dwarfs ○○○○ ○●	Experimental Observation of Compact Obje 0000000 00000
Cooling of Wł	nite Dwarfs	

Cooling Equations

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

	Theory of Neutron Stars	
0000 0000 00		000000 00000

1 Introduction

- 2 Theory of White Dwarfs
- 3 Theory of Neutron Stars

4 Experimental Observation of Compact Objects

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

	Theory of White 0000 0000 00	Theory of Neutron Stars •0000000	Experimental Observation of Compact Obje 0000000 00000
Equilibrium o	of Neutron Stars		

1 Introduction

- 2 Theory of White Dwarfs
- 3 Theory of Neutron StarsEquilibrium of Neutron Stars
- 4 Experimental Observation of Compact Objects

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

(日) (日) (日)

Theory of White Dwarfs 0000 000	Theory of Neutron Stars 0000000	Experimental Observation of Compact Obje 0000000 00000

Equilibrium of Neutron Stars

Equation of Equilibrium

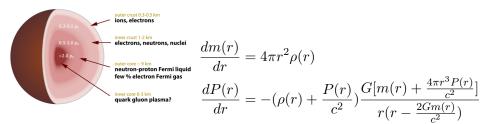


Figure: The possible interior structure of neutron star

Chen Yangyao, Guo Xiao, Li Minghao

School of Physical Science and Technology, Wuhan University

< ロ > < 同 > < 回 > < 回 >

Equation of States: Neutron Stars

The following equation of states was formulated by Chandrasekhar and cited by Oppenheimer in his paper on neutron star theory in 1939.

$$\rho_E = \kappa(\sinh t - t)$$
$$P = \frac{\kappa}{3}(\sinh t + 3t - 8\sinh\frac{t}{2})$$

Remark

The above equation of state is merely a naive model. Modern theory uses far more complicated equation of state based on strong interactions between neutrons.

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects chool of Physical Science and Technology, Wuhan University

・ 同 ト ・ ヨ ト ・ ヨ ト

э

	Theory of White Dwarfs 0000 0000 00	Theory of Neutron Stars 00000000	Experimental Observation of Compact Obje 00000000 00000
Equilibrium o			

Solution Corresponding to the Oppenheimer's EOS

Figure: Numerical Solution of TOV Equation

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

< ∃→

э

	Theory of 0000 0000 00		s Theory of Neutron Stars 0000●000	Experimental Observat 0000000 00000	
Equilibrium c	f Neutron	Stars			

Solution Corresponding to the Approximation of Oppenheimer's EOS

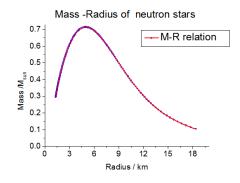


Figure: Numerical Solution of TOV Equation

On the Evolution of Compact Objects

< 同 ▶

→

	Theory of White Dwarfs 0000 0000 00	Theory of Neutron Stars 0000000	Experimental Observation of Compact Obje 0000000 00000
Equilibrium o			

A Qualitatively Illustration of the Increase of Maximum Mass

Equilibrium: Gravity against degeneracy pressure. Neutron's degeneracy pressure in the two cases are given by:

> $P = K \rho^{4/3}$ Relativistic Case $P = K \rho^{5/3}$ Non-Relativistic Case

Relativistic effects result in a weaker degeneracy pressure at a given density.

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

イロト イポト イヨト イヨ

	Theory of Whit 0000 0000 00	Theory of Neutron Stars 0000000	Experimental Observation of Compact Obj 0000000 00000
Equilibrium c	f Neutron Stars		

Oppenheimer's Original Results

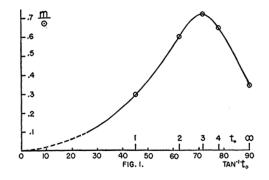


Figure: The solution of Oppenheimer and Volkoff.

< 2 → < 2

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

	Theory of 0000 0000 00		Theory of Neutron Stars 0000000●	Experimental 00000000 00000		
Equilibrium c	f Neutron	Stars				

Cooling of Neutron Stars

In general, the cooling equation is:

$$\alpha T \frac{dT}{dt} = -bT^k - cT^2$$

The two terms in the equation correspond to neutrino emission and photon emission respectively.

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects chool of Physical Science and Technology, Wuhan University

< 3 > 1

	Experimental Observation of Compact Obje
0000 0000 00	0000000 00000

1 Introduction

- 2 Theory of White Dwarfs
- 3 Theory of Neutron Stars

4 Experimental Observation of Compact Objects

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

	Theory of W 0000 0000 00			Experimental Observation of Compact (••••••• •••••	Dbje
Astronomical	Observation	of White Dw	arfs.		

- 1 Introduction
- 2 Theory of White Dwarfs
- 3 Theory of Neutron Stars
- 4 Experimental Observation of Compact Objects
 Astronomical Observation of White Dwarfs
 Astronomical Observation of Neutron Stars

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects chool of Physical Science and Technology, Wuhan University

Theory of White Dwarfs 0000 0000 00		Experimental Observation of Compact Obj ••••••••• •••••••••
Observation of White Dy	varfs	

Gallery

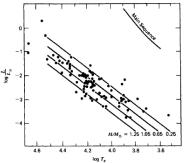
Figure: Hubble Telescope's Photo of Sirius A and B

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

	Theory of White Dwarfs 0000 0000 00		Experimental Observation of Compact Obje 0000000 00000
Astronomical	Observation of White Dy	varfs	

Gallery

Figure: Hubble Telescope's Photo of NGC 2440: Pearl of a New White Dwarf



Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

▲御▶ ▲理▶ ▲理

White Dwarfs on H-R Diagram

According to *Stefan-Boltzmann Law*, we should have:

 $\log L \propto 4 \log T_e$

Therefore, white dwarfs are expected to occupy a narrow strap in H-R diagram.

Figure: White Dwarfs on H-R Diagram

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

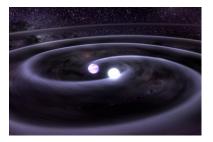
	Theory of 0000 0000 00				s Experimenta 00000000 00000	l Observation	of Co	mpact	Obje
Astronomical	Observatio	n of Whi	ite Dw	arfe					

Measuring the Radii of White Dwarfs

According to energy conservation in radiation, we have:

$$F_{\nu}(\text{Measured}) = F_{\nu}(\text{Surface}) \frac{R^2}{D^2}$$

In this formula, all quantities except R can be directly or indirectly measured by observations.



Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects chool of Physical Science and Technology, Wuhan University

	Experimental Observation of Compact Object
0000 0000 00	00000000 00000

Astronomical Observation of White Dwarfs

Measuring the Masses of White Dwarfs Using Kepler's 3rd Law

Figure: White Dwarfs Binary System

Invoking:

$$P = 2\pi \left(\frac{G(M_1 + M_2)}{a^3}\right)^{-1/2}$$
$$M_1 a_1 = M_2 a_2$$

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

• = • • =

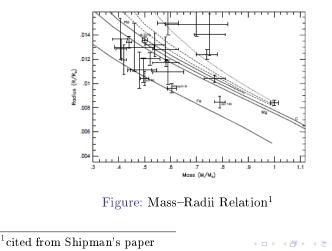
Theory of White Dwarfs 0000 0000 00		Experimental Observation of Compact Obje 0000000 00000
Observation of White Dy	varfs	

Measuring the Masses of White Dwarfs Using Gravitational Redshift

The formula is given below:

$$\frac{\Delta\lambda}{\lambda} = \frac{GM}{Rc^2}$$

Remark


In order to distinguish redshift effects from Doppler effects, physicists usually use white dwarfs in wide binaries or common proper-motion pairs, for these white dwarfs' velocities can be measured accurately.

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects school of Physical Science and Technology, Wuhan University

・ 「 ・ ・ ・ ・ ・ ・ ・ ・

Mass–Radius Relation as Experimental Result

Chen Yangyao, Guo Xiao, Li Minghao

School of Physical Science and Technology, Wuhan University

	Theory of Whit 0000 0000 00			Experimental Observation o 0000000 00000	f Compact	Obje
Astronomical	Observation of l	Neutron 8	Stars			

- 4 Experimental Observation of Compact Objects Astronomical Observation of White Dwarfs
 - Astronomical Observation of Neutron Stars

э

Theory of White Dwarfs 0000 0000 00	Experimental Observation of Compact Ol 0000000 0000
Observation of Neutron S	

Gallery

Figure: Crab Nebula: A Supernova Remnant

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects

▲□▶ ▲□▶ ▲□▶ School of Physical Science and Technology, Wuhan University

Theory of White Dwarfs 0000 0000 00	Experimental Observation of Compact Obj 0000000 00000
Observation of Neutron S	

Gallery

Figure: Vela Pulsar: A Pulsar in a Supernova Remnant

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

<ロト <部ト <注ト < 注

Introduction Theory of White Dwarfs Theory of Neutron Stars Experimental Observation of Compact Obje 00000

Measuring Neutron Stars' Masses Using Kepler's 3rd Law

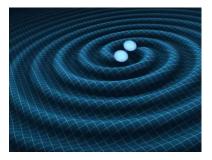
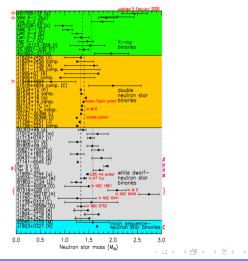


Figure: Neutron Stars Binary System

Invoking:

$$P = 2\pi \left(\frac{G(M_1 + M_2)}{a^3}\right)^{-1/2}$$
$$M_1 a_1 = M_2 a_2$$


On the Evolution of Compact Objects

< 同 ▶

• = • • =

Theory of White Dwarfs 0000 0000 00	Experimental Observation of Compact O
Observation of Neutron S	

Neutron Stars' Masses as Experimental Results

Chen Yangyao, Guo Xiao, Li Minghao

chool of Physical Science and Technology, Wuhan University

Astronomical Observation of Neutron Stars

- Lorimer, D. R., Kramer, M., *Handbook of Pulsar* Astronomy, (London: Cambridge University Press, 2005).
- Chau, W. Y., Ap. J., 147, 664, (1967).
- Woltjer, L., Ap. J., 140, 1309, (1964).
- Lorimer, D. R., et.al, Mon. Not. R. Astron. Soc. 372, 777-800, (2006).
- Lorimer, D. R., Young Neutron Stars and Their Environments IAU Symposium, Vol. 218, (2004).
- Stuart L. Shapiro and Saul A. Teukolsky, Black holes, white dwarfs, and neutron stars: the physics of compact objects (New York: Wiley, 1983).

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects School of Physical Science and Technology, Wuhan University

イロト イボト イヨト イヨト

Astronomical Observation of Neutron Stars

- Provencal, J. L., Shipman, H. L., et.al, *The Astrophysical Journal*, 494 :759-767, (1998).
- Kippenhahn, J., Weigert, A., Weiss, A., Stellar Structure and Evolution, (Berlin: Springer, 2012).
- Sedrakian, A., Lecture on Astroparticle Physics, (2015).
- Wald, R., *General Relativity*, (Chicago: the University of Chicago Press, 1984).
- Carrol, S., *Spacetime and Geometry*, (Addison-Wesley, 2004).
- Lattimer, J.M., Neutron Star Equations of State, (Addison-Wesley, 2009).

ъ

Chen Yangyao, Guo Xiao, Li Minghao On the Evolution of Compact Objects chool of Physical Science and Technology, Wuhan University

イロト イボト イヨト イヨト

Introduction Theory of White Dwa ocoo ocoo ocoo oc		Experimental Observation of Compact Obje 00000000 0000
--	--	--

Astronomical Observation of Neutron Stars

- Oppenheimer, R., Volkoff, G.M., *Physical Review*. 55. 374-381, (1939).
- Silbar, R., Reddy, S., American journal of physics. 72.892, (2004).

Chen Yangyao, Guo Xiao, Li Minghao

School of Physical Science and Technology, Wuhan University